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The problem of recovering a signal x ∈ Rn from a set of magnitude measurements 
yi = |〈ai,x〉|, i = 1, . . . , m is referred as phase retrieval, which has many 
applications in fields of physical sciences and engineering. In this paper we show 
that the smoothed amplitude flow based model for phase retrieval has benign 
geometric structure under the optimal sampling complexity. In particular, we show 
that when the measurements ai ∈ Rn are Gaussian random vectors and the 
number of measurements m ≥ Cn, our smoothed amplitude flow based model 
has no spurious local minimizers with high probability, i.e., the target solution 
x is the unique global minimizer (up to a global phase) and the loss function 
has a negative directional curvature around each saddle point. Due to this benign 
geometric landscape, the phase retrieval problem can be solved by the gradient 
descent algorithms without spectral initialization. Numerical experiments show 
that the gradient descent algorithm with random initialization performs well even 
comparing with state-of-the-art algorithms with spectral initialization in empirical 
success rate and convergence speed.
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1. Introduction

1.1. Background

This paper concerns the well-known phase retrieval problem, which aims to recover the signal x ∈ Rn

from a series of magnitude-only measurements

yi = |〈ai,x〉|, i = 1, . . . ,m

where ai ∈ Rn, i = 1, . . . , m are Gaussian random vectors and m is the number of measurements. This 
problem arises in many fields of science and engineering due to the physical limitations of optical detectors 
which can only record the magnitude of signals while losing the phase information, such as X-ray crystallog-
raphy [23,32], microscopy [31], astronomy [14], coherent diffractive imaging [12,36] and optics and acoustics 
[4,5,43] etc. Despite its simple mathematical form, it has been shown that reconstructing a finite-dimensional 
discrete signal from the magnitude of its Fourier transform is generally an NP-complete problem [35].

Many algorithms have been designed to solve the phase retrieval problem. They fall generally into two 
categories: convex algorithms and non-convex ones. The convex algorithms usually rely on a “matrix-lifting” 
technique, which lifts the phase retrieval problem into a low rank matrix recovery problem, together with 
convex relaxation by showing that the matrix recovery problem under some conditions is equivalent to a con-
vex optimization problem. These algorithms include PhaseLift [8,10], PhaseCut [42] etc. It has been shown 
[8] that PhaseLift can achieve the exact recovery under the optimal sampling complexity with Gaussian 
random measurements.

Although convex methods have good theoretical guarantees to converge to the true solutions under some 
special conditions, they tend to be computationally inefficient for large scale problems. By contrast, many 
non-convex algorithms do not need the lifting step so they operate directly on the lower-dimensional ambient 
space, making them much more efficient. Early non-convex algorithms were based mostly on alternating 
projections, e.g. Gerchberg-Saxton [22] and Fineup [17]. The drawback is the lack of theoretical guarantee. 
Later Netrapalli et al. [33] proposed the AltMinPhase algorithm based on a technique known as spectral 
initialization, and they proved that the algorithm linearly converges to the true solution with O(n log3 n)
resampling Gaussian random measurements. This work led to further several other non-convex algorithms 
based on spectral initialization [6,9,11,24,25,41]. They share the common idea of first choosing a good initial 
guess through spectral initialization, and then solving an optimization model through gradient descent. Two 
commonly used optimization models are the intensity flow based model

min
z∈Rd

F (z) = 1
m

m∑
j=1

(
|〈aj , z〉|2 − y2

j

)2 (1)

and the amplitude flow based model

min
z∈Rd

F (z) = 1
m

m∑
j=1

(|〈aj , z〉| − yj)2 . (2)

Specifically, Candès et al. developed the Wirtinger Flow (WF) [9] method based on (1) and proved that the 
WF algorithm can achieve linear convergence with O(n logn) Gaussian random measurements. Lately, Chen 
and Candès improved the results to O(n) Gaussian random measurements by incorporating a truncation, 
namely the Truncated Wirtinger Flow (TWF) [11] algorithm. Other methods based on (1) include the 
Gauss-Newton [19], the trust-region [38], and others. Several algorithms based on the amplitude flow model 
(2) have also been developed recently, such as the Truncated Amplitude Flow (TAF) algorithm [44], the 
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Reshaped Wirtinger Flow (RWF) [46] algorithm and the Perturbed Amplitude Flow (PAF) [18] algorithm. 
All three algorithms above have been shown to linearly converge to the true solution up to a global phase 
with O(n) Gaussian random measurements. Furthermore, numerical results show that algorithms based on 
the amplitude flow model (2) tend to outperform algorithms based on model (1). We refer the reader to 
survey papers [26,36] for accounts of recent developments in the theory, algorithms and applications of phase 
retrieval.

1.2. Motivation and related work

As we have stated earlier, producing a good initial guess using spectral initialization is a prerequisite for 
all aforementioned non-convex algorithms with theoretical guarantee. An interesting question is that Is it 
possible for those algorithms to achieve successful recovery with a random initialization?

For intensity-based model (1), the answer is yes. Ju Sun et al. [38] study the global geometry structure 
of the loss function of (1). They show the loss function F (z) does not have any spurious local minima under 
O(n log3 n) Gaussian random measurements. It means that all minimizers are the target signal x up to a 
global phase and the loss function has a negative directional curvature around each saddle point. Thus any 
algorithm which can avoid saddle points converges to the true solution with high probability. They also 
develop a trust-region method to find a global solution with random initialization. To reduce the sampling 
complexity, it has been shown that the combination of the loss function (1) and an activation function also 
possesses the benign geometry structure under O(n) Gaussian random measurements [30].

The geometry landscape concept has also been explored in recent years for other applications in signal 
processing and machine learning. For instance, to understand the surprising phenomenon that why the 
neural networks can be trained successfully in practice via simple first-order algorithms like gradient descent, 
several theoretical insights have been provided by analyzing the geometry landscape of over-parameterized 
shallow neural networks [15,37]. Well-behaved geometry landscapes for optimization, namely all local optimal 
are also global optimal and the loss function has a negative directional curvature around each saddle 
point, have been shown to exist more broadly, such as matrix sensing [7,34], tensor decomposition [2,20], 
dictionary learning [1,3,39], blind deconvolution [29] and matrix completion [21]. Several techniques have 
been developed to guarantee that the basic gradient optimization algorithms can escape such saddle points 
efficiently, see e.g. [16,27,28].

1.3. Our contributions

Optimization algorithms based on the amplitude model (2) have been shown to outperform those based 
on the intensity model (1) [45]. Naturally we may ask whether it is possible to examine the geometric 
landscape for the amplitude model (2) and develop algorithms similar to the ones in [30,38]. As it turns 
out, a straightforward approach based on model (2) loss function fails as there will be many local minima 
regardless how many measurements one take. To remedy this issue, we show that by altering the amplitude 
model based loss function slightly we are able to obtain to benign geometric landscape for the loss function, 
thus yielding a fast algorithm that requires only O(n) measurements and no initialization. Furthermore, 
numerical tests show that the algorithm outperforms several existing algorithms in terms of efficiency.

We now describe our study in more details. Let x ∈ Rn be the target signal we want to recover. The 
measurements we obtain are

yi = |〈ai,x〉|, i = 1, . . . ,m

where ai ∈ Rn, i = 1, . . . , m are Gaussian random vectors. For the recovery of x we consider the following 
new loss function F (z) given by
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F (z) = 1
2m

m∑
i=1

y2
i

(
γ

(
a�
i z

yi

)
− 1

)2

, (3)

where the function γ(t) is taken to be

γ(t) :=
{

|t|, |t| > β;
1
2β t

2 + β
2 , |t| ≤ β,

(4)

for some constant 0 < β ≤ 1. Note that the event 
⋃m

i=1{a�
i x = 0} has zero probability and we may assume 

that yi �= 0 for all i. Another practical way is to define y2
i

(
γ
(

a�
i z
yi

)
− 1

)2
= |a�

i z|2 when yi = 0. A simple 

observation is that F (z) = 0 if and only if yi = |〈ai,x〉| for all i = 1, . . . , m, which means any global 
minimizer of F (z) is exactly the true solution x up to a global phase provided m ≥ 2n − 1 [5,13].

Because γ(t) is smoothed from |t| in the amplitude flow model, we shall call our model the Smoothed 
Amplitude Flow (SAF) model. Clearly if we set γ(t) := |t| then the loss function is exactly the one of 
amplitude flow based model given in (2). Unfortunately in this case the loss function does not yield the 
desired geometric landscape: Regardless how many measurements one take, there will appear multiple local 
minima. Our new loss function, however, will have the desired property. The main theorem of the paper is 
the following:

Theorem 1.1. For any fixed 0 < β ≤ 1/2, assume m ≥ Cβ−2 log(1/β)n. Let x ∈ Rn be nonzero and 
{ai}mi=1 be i.i.d. random Gaussian vectors, i.e., ai ∼ N (0, In) for all i. Then with probability at least 
1 − c′ exp(−cβ2m) the loss function F (z) given in (3) has no spurious local minima, i.e. all local minima 
are also global minima and any other critical point is a saddle point with a negative directional curvature. 
Here C, c and c′ are universal positive constants.

Theorem 1.1 implies that gradient descent with any random initial point will not get stuck in a local 
minimum. Our result turns out to be not just of theoretical interest. Numerical tests show that this model 
yields very stable and fast convergence with random initialization and performs as good as or even better 
than the existing gradient descent methods with spectral initialization.

1.4. Organization

The rest of this paper is organized as follows. In Section 2, we provide an outline of the proof. In Section 3, 
we break down Rn into several regions and investigate the geometric property of F (z) on each region. In 
Section 4, we carry out some numerical experiments to demonstrate the effectiveness of our model. Section 5
contains the detailed justification for the technical lemmas presented in Section 3. Finally, the appendix 
collects some auxiliary lemmas and propositions.

2. Geometric properties of the SAF loss function

Our main theorem is a consequence of the analysis of the geometric landscape of the loss function F (z)
given in (3). As with [38], we shall decompose Rn into several regions (not necessarily non-overlapping), on 
each of which F (z) has certain property that will allow us to show that with high probability F (z) has no 
local minimizers other than ±x. Furthermore, we show F (z) is strongly convex in a neighborhood of ±x.

Thus our strategy for proving the main result is as follows:

Step 1: Compute the gradient and Hessian of the loss function F (z). Since F (z) is not 2nd order differen-
tiable we shall consider the directional second derivative of F (z). Notice that all these are given by 
sums of random variables.
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Step 2: Apply concentration inequalities such as Bernstein’s inequality as well as union bounds to approx-
imate the sums of random variables for a given z.

Step 3: Estimate the approximations obtained from concentration inequalities to establish the geometric 
properties for F (z). In particular we shall estimate 〈∇F (z), z〉, 〈∇F (z),x〉, and D2

vF (z) where D2
v

denotes the directional 2nd order derivative along the direction v of F (z).

Because γ(t) of (4) is given piecewise, the main difficulty here lies with estimations in step 3. Fortunately, 
while tedious, they can be done to yield what we will need to prove the theorem.

2.1. Step 1

Note that F (z) is continuously differentiable, but it is not 2nd order differentiable, so for the 2nd order 
derivatives we will resort to directional derivatives. Recall that for a function g(z) and any vector v �= 0 in 
Rn, the one-side directional derivative of g at z along the direction v is given by

Dvg(z) := lim
t→0+

g(z + tv) − g(z)
t

if the limit exists. Furthermore, we denote

D2
vg(z) = Dv(Dvg(z))

as the second order directional derivative of g at z along the direction v. As we shall show, both the gradient 
∇F (z) and the D2

vF (z) are subexponential random variables in terms of a�z, a�x, and a�v. This enables 
us to apply concentration inequalities described in Step 2. The details will be given in Section 5.

2.2. Step 2

Concentration inequalities allow us to estimate the sums of random variables so we can estimate them 
for proving the main result. Also, we will need those inequalities to hold uniformly for all z on certain 
region. This is typically proved by using some δ-nets, and there is no exception here. We shall be dealing 
with subexponential random variables in this paper and we have:

Lemma 2.1. Let g(s, t) be a real valued function such that g(a�
i z, a

�
i x) is subexponential with subexponential 

norm ‖g(a�
i z, a

�
i x)‖Ψ1 ≤ τ . Assuming that on a compact set Ω we have

1
m

m∑
i=1

∣∣g(a�
i z,a

�
i x) − g(a�

i z0,a
�
i x)

∣∣ ≤ 1
m

m∑
i=1

K(ai)|a�
i (z − z0)| (5)

for any z, z0 ∈ Ω, where K(ai) is a subgaussian random variable with subgaussian norm η. Then for any 
0 < ε ≤ τ there exists a universal constant C > 0 such that for m ≥ C max

(
τ2/ε2, 1/η2, 1

)
· log(η/ε) · n we 

have

∣∣∣ 1
m

m∑
i=1

g(a�
i z,a

�
i x) − E[g(a�

1 z,a
�
1 x)]

∣∣∣ ≤ ε (6)

with probability at least 1 − exp(−c′(ε, τ, η)m) for all z ∈ Ω. Here, the constant c′(ε, τ, η) := c ·
min

(
ε2/τ2, η2, 1

)
for some universal constant c > 0.

Proof. We shall give the proof in the Section 5. �
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2.3. Step 3

To prove the main result we will need to estimate several integrals involving the gradient and directional 
2nd order derivatives of F (z) for m ≥ Cn for some C > 0. We shall show that for a given x �= 0, with high 
probability the Smoothed Amplitude Flow loss function F (z) is strictly convex on a small neighborhood 
of ±x. When z is not too close to being orthogonal to x, with high probability F (z) has no critical point. 
Finally, for z close to being orthogonal to x, we show that with high probability any critical point is a 
saddle point with a negative directional curvature. We shall present these in Section 3. Here “with high 
probability” means there exist constants c, δ > 0 such that the probability is at least 1 − c exp(−δm).

3. Proof of the main results

In this section we present the detailed geometric landscape of F (z). We first decompose Rn into several 
regions (not necessarily non-overlapping). Next, we show F (z) is strongly convex in the neighborhood of 
true solution, and either the gradient doesn’t vanish or F (z) has a negative directional curvature in other 
regions.

Since F (z) = F (−z), to analyse the SAF model here we may without loss of generality consider solving 
the SAF model on the half space 〈z,x〉 ≥ 0. With this in mind, we denote σ = σ(z) := 〈z,x〉/‖z‖‖x‖ ≥ 0
and τ = τ(z) :=

√
1 − σ2. Then we can decompose Rn into five regions as shown below.

• R1 :=
{
z ∈ Rn : ‖z‖ ≥ 2

π

(
τ + σ arctan σ

τ

)
+ δ0

}
,

• R2 := {z ∈ Rn : ε0 ≤ ‖z‖ ≤ 1 and σ0 ≤ σ ≤ 1 − σ0},
• R3 := {z ∈ Rn : ε0 ≤ ‖z‖ ≤ 1 − ε0 and σ ≥ 1 − σ1},
• R4 := {z ∈ Rn : ‖z‖ ≤ 1 + δ1 and σ ≤ σ2} ∪ {z ∈ Rn : ‖z‖ ≤ δ1},
• R5 := {z ∈ Rn : dist(z,x) ≤ δ2},

where δ0, ε0, σ0 > 0 are arbitrary small positive constants and δ1, δ2, σ1, σ2 are some constants which will be 
specified in our lemmas later. Fig. 1 visualizes the partitioning regions described above and gives the idea 
of how they cover the whole space.

The properties of F (z) over these five regions are summarized in the following five lemmas.

Lemma 3.1. Assume that 0 < β < 1 and ‖x‖ = 1. For any δ0 > 0 there exists ε0 > 0 such that with 
probability at least 1 − 2 exp(−cδ2

0m) for m ≥ Cδ−2
0 log(1/β)n,

〈∇F (z), z〉 ≥ ε0‖z‖2

for all ‖z‖ ≥ 2
π

(
τ + σ arctan σ

τ

)
+ δ0, i.e., z ∈ R1. Here, C and c are some universal constants.

Lemma 3.2. Assume that 0 < β ≤ 1/2 and ‖x‖ = 1. For any ε0, σ0 > 0 there exists ε > 0 such that with 
probability at least 1 − 2 exp(−cm) for m ≥ C log(1/β)n, we have 〈∇F (z),x〉 < −ε for all z such that 
ε0 ≤ ‖z‖ ≤ 1 and σ0 ≤ σ ≤ 1 − σ0, i.e., z ∈ R2. Here, C and c are some universal constants.

Lemma 3.3. Assume that 0 < β < 1 and ‖x‖ = 1. For any ε0 > 0 there exist σ1, ε > 0 such that with 
probability at least 1 − 2 exp(−cm) for m ≥ C log(1/β)n, we have 〈∇F (z),x〉 < −ε for all z such that 
ε0 ≤ ‖z‖ ≤ 1 − ε0 and σ ≥ 1 − σ1, i.e., z ∈ R3. Here, C and c are some universal constants.

Lemma 3.4. Assume that 0 < β ≤ 3/4 and ‖x‖ = 1. There exist σ2, ε0, δ1 > 0 such that with probability at 
least 1 − 4 exp(−cβ2m) for m ≥ Cβ−2 log(1/β)n we have D2

xF (z) < −ε0 for all z such that ‖z‖ ≤ 1 + δ1
and σ ≤ σ2, as well as all z ∈ Bδ1(0). Here, C and c are universal constants.
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Fig. 1. Partition of R2: The target signal is x = [1, 0] with constants δ0 = 0.01, δ1 = 0.02, δ2 = 0.1, σ0 = σ1 = σ2 = 0.05 and 
ε0 = 0.1. (a): The composition of all regions; (b): The region R1; (c): The region R2; (d): The region R3; (e): The region R4; (f): 
The region R5.

Lemma 3.5. Assume that 0 < β < 3/4 and ‖x‖ = 1. There exists δ2 > 0 such that with probability at least 
1 − 2 exp(−cβ2m) for m ≥ Cβ−2 log(1/β)n we have D2

vF (z) ≥ 0.5 for all z ∈ Bδ2(x) and unit vectors 
v ∈ Rn. In other words, F (z) is strongly convex in R5. Here, C and c are universal constants.

The proofs of the above lemmas are given in Section 5. Lemma 3.1, Lemma 3.2 and Lemma 3.3 guarantee 
the gradient of F (z) does not vanish in R1, R2 and R3, respectively. Thus the critical points of F (z) can 
only occur in R4 and R5. However, Lemma 3.4 shows that at any critical point in R4, F (z) has a negative 
directional curvature. Finally, Lemma 3.5 implies that F (z) is strongly convex in R5. Recognizing that 
∇F (x) = 0 and x ∈ R5, thus x is the local minimizer. Putting it all together, we can establish Theorem 1.1
as shown below.

Proof of Theorem 1.1. Without loss of generality we shall only examine the region σ ≥ 0, i.e. 〈z,x〉 ≥ 0. 
From Lemma 3.1, Lemma 3.2 and Lemma 3.3, we can see that the constant δ0 > 0 in region R1 and 
the constants σ0, ε0 > 0 in regions R2 and R3 can be sufficiently small. Combining with Lemma 3.4 and 
Lemma 3.5, it is easy to check that all regions above have covered the whole space to ensure that with 
probability at least 1 − c′ exp(−cβ2m) for m � 1/β2 log(1/β)n: (i) In a small neighborhood of x the target 
function F (z) is strongly convex with z = x being a minimum. (ii) Everywhere else either the gradient of 
F (z) doesn’t vanish or F (z) has a negative directional curvature. Thus other than x the target function 
F (z) has no other local minimum.
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Fig. 2. The partitioning regions for R1, R2, R3, R4 and R5 with the norm of z as the function of the angle θ. Here, some regions 
are overlapping. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

To illustrate how the regions cover the whole space, let θ be the angle between the vector z and the true 
solution x. Then 0 ≤ θ ≤ π/2 and σ = cos(θ). We can plot the figure of ‖z‖ with respect to θ as shown in 
Fig. 2. We can see that all the regions cover the whole space, which proves the theorem. �

4. Numerical experiments

The SAF model proposed in this paper shows theoretically that any gradient descent algorithm will not 
get trapped in a local minimum. Here we present numerical experiments to show that the model performs 
very well with random initial guess.

We use the following vanilla gradient descent algorithm

zk+1 = zk − μ∇F (zk)

with a random initial guess to minimize the loss function F (z) of SAF. The algorithm procedure is as 
follows:

Algorithm 1 Gradient descent algorithm based on Smoothed Amplitude Flow (SAF).
Input: Measurement vectors: ai ∈ Rn, i = 1, . . . , m; Observations: y ∈ Rm; Parameters β; Step size μ; Tolerance ε > 0

1: Random initial guess z0 ∈ Rn.
2: For k = 0, 1, 2, . . ., if ‖∇F (zk)‖ ≥ ε do

zk+1 = zk − μ∇F (zk)

3: End do
Output: The vector zT .

The performance of our SAF algorithm is conducted via a series of numerical experiments in comparison 
against WF [9], TWF [11] and TAF [44]. Here, it is worth emphasizing that random initialization is used for 
our SAF algorithm while all other algorithms have adopted a spectral initialization. Our theoretical results 
are for real Gaussian case, but the algorithms can be easily adapted to the complex Gaussian case. In our 
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Fig. 3. The empirical success rate for different m/n based on 100 random trails. (a) Success rate for real Gaussian case, (b) success
rate for complex Gaussian case.

numerical experiments, the target vector x ∈ Rn is chosen randomly from the standard Gaussian distribu-
tion and the measurement vectors ai, i = 1, . . . , m are also generated randomly from standard Gaussian 
distribution. For the real Gaussian case, the signal x ∼ N (0, In) and measurement vectors ai ∼ N (0, In)
for i = 1, . . . , m. For the complex Gaussian case, the signal x ∼ N (0, In) + iN (0, In) and measurement 
vectors ai ∼ N (0, In/2) + iN (0, In/2). For WF, TWF and TAF, we use the code provided in the original 
papers with suggested parameters.

Example 4.1. In this example, we test the empirical success rate of SAF versus the number of measurements 
with parameter β = 1/2. We conduct the experiments for the real and complex Gaussian cases respectively. 
We choose n = 128. The step size μ = 0.6 and the maximum number of iterations is T = 2000. For the 
number of measurements, we vary m within the range [n, 8n]. For each m, we run 100 times trials to calculate 
the success rate. Here, we say a trial to have successfully reconstructed the target signal if the relative error 
satisfies dist(zT − x)/‖x‖ ≤ 10−5. The results are plotted in Fig. 3. It can be seen that 4.5n real Gaussian 
phaseless measurements or 5.5n complex Gaussian phaseless measurements are enough for exactly recovery 
for SAF with random initialization.

Example 4.2. In this example, we compare the convergence rate of SAF with those of WF, TWF, TAF for real 
Gaussian and complex Gaussian cases. We choose n = 128 and m = 5n. The step size μ = 0.8 and parameter 
β = 1/2. To show the robustness of our SAF, we also consider the noisy data model yi = |〈ai,x〉| +ηi where 
the noise ηi ∼ 0.01 ·N(0, 1). The results are presented in Fig. 4. Since our SAF algorithm chooses a random 
initial guess according to the standard Gaussian distribution instead of adopting a spectral initialization, 
it sometimes needs to escape the saddle points with a small number of iterations. Due to its high efficiency 
to escape the saddle points, it still performs well comparing with state-of-the-art algorithms with spectral 
initialization.

Example 4.3. In this example, we compare the time elapsed and the iteration needed for WF, TWF, TAF 
and our SAF to achieve the relative error 10−5 and 10−10, respectively. We choose n = 1000 with m = 8n. 
The step size μ = 0.8. For the parameter β in our SAF, we consider the case β = 1/2. We adopt the same 
spectral initialization method for WF, TWF, TAF and the initial guess is obtained by power method with 
50 iterations. We run 50 times trials to calculate the average time elapsed and iteration number for those 
algorithms. The results are shown in Table 1. The numerical results show that SAF takes around 20 and 40
iterations to escape the saddle points for the real and complex Gaussian cases, respectively. Since there is 
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Fig. 4. Relative error versus number of iterations for SAF, WF, TWF, and TAF methods: (a) The noiseless measurements for real 
Gaussian case; (b) The noiseless measurements for complex Gaussian case; (c) The noisy measurements for real Gaussian case; 
(d) The noisy measurements for complex Gaussian case.

Table 1
Time Elapsed and Iteration Number among Algorithms on Gaussian Signals with n = 1000.

Algorithm Real Gaussian Complex Gaussian
10−5 10−10 10−5 10−10

Iter Time (s) Iter Time (s) Iter Time (s) Iter Time (s)
SAF 44 0.1556 68 0.2276 113 1.3092 190 2.3596
SAF (spectral) 25 0.2631 51 0.3309 67 1.4528 151 2.6122
WF 125 4.4214 229 6.3176 304 34.6266 655 86.6993
TAF 29 0.2744 60 0.3515 100 1.7704 211 2.7852
TWF 40 0.3181 87 0.4274 112 1.9808 244 3.7432

no spectral initialization, the high efficiency of escaping saddle points and low computational complexity, 
the time elapsed of SAF is less than the other methods significantly.

Example 4.4. In this example, we show the performance of SAF with different parameter β in the real 
Gaussian case. We choose n = 128 and the step size μ = 0.6. For SAF with random initialization, we choose 
m = 4n; and for SAF with spectral initialization, we choose m = 2.5n. We test the parameter β within the 
range from 0.1 to 1.0. For each β, we run 100 times trials and calculate the success rate, where a trial is 
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Fig. 5. Relative error versus the parameter β for SAF: (a) SAF with random initialization under m = 4n; (b) SAF with spectral 
initialization under m = 2.5n.

successful if the relative error is less than 10−5. The results are depicted in Fig. 5. From the figures, we can 
see our SAF has better performance as the parameter β increasing.

5. Proofs of technical results in Section 3

5.1. Notations

In the rest of the paper we shall adopt the following notations and specify some assumptions without 
loss of generality.

(A1) Without loss of generality, we only consider solving the SAF model on the half space 〈z,x〉 ≥ 0. 
Denote σ = σ(z) := 〈z,x〉/‖z‖‖x‖ ≥ 0 and τ = τ(z) :=

√
1 − σ2. Furthermore, we shall write

z

‖z‖ = σ
x

‖x‖ + τw (7)

where w ⊥ x and ‖w‖ = 1.
(A2) Denote λ = β/‖z‖. Two quantities that appear often in the paper are μ+ = μ+(λ, σ) and μ− =

μ−(λ, σ) given by

μ2
+ := 1 + (σ + λ)2

τ2 = 1
τ2 (1 + λ2 + 2σλ),

μ2
− := 1 + (σ − λ)2

τ2 = 1
τ2 (1 + λ2 − 2σλ).

(A3) We may of course without loss of generality assume that ‖x‖ = 1. Let a ∼ N (0, In) be a standard 
Gaussian vector in Rn. From the orthogonal decomposition z/‖z‖ = σx + τw in (7), define U =
a�z/‖z‖, V = a�x and W = a�w. Then U, V, W ∼ N (0, 1) and V, W are independent. Let A = A(λ)
denote the event

A = A(λ) :=
{
a : |a�z| ≤ β|a�x|

}
= {a : |U | ≤ λ|V |} .



J.-F. Cai et al. / Appl. Comput. Harmon. Anal. 58 (2022) 60–84 71
5.2. Gradient and Hessian of the loss function

For x �= 0 and standard Gaussian random vectors {ai}mi=1, recall that F (z) a continuously differentiable 
function given by

F (z) = 1
2m

m∑
i=1

(
γ

(
a�
i z

a�
i x

)
− 1

)2

· |a�
i x|2, (8)

with

γ(t) :=
{

|t|, |t| > β;
1
2β t

2 + β
2 , |t| ≤ β.

For the convenience, we shall denote

fi(z) = 1
2

(
γ

(
a�
i z

a�
i x

)
− 1

)2

· |a�
i x|2

and

Ψ(u, v) = 1
2

(
γ
(u
v

)
− 1

)2
v2 if v �= 0, and Ψ(u, 0) = 1

2u
2. (9)

Then the loss function can be denoted as

F (z) = 1
m

m∑
i=1

fi(z) = 1
m

m∑
i=1

Ψ(a�
i z,a

�
i x).

A simple calculation gives

∇F (z) = 1
m

m∑
i=1

Ψu(a�
i z,a

�
i x)ai,

where Ψu(u, v) is the partial derivative of Ψ(u, v) with respect to u and

Ψu(u, v) =
(
γ
(u
v

)
− 1

)
γ′
(u
v

)
v =

{
sgn(u)(|u| − |v|), |u| > β|v|;

1
2β2

u3

v2 + (1
2 − 1

β )u, |u| ≤ β|v|. (10)

The boundedness and Lipschitz properties of Ψu are given in Lemma 6.2.
We next turn to deduce the second order directional derivatives of the target function F (z). For any 

v ∈ Rn, we have

D2
vF (z) = 1

m

m∑
i=1

D2
vfi(z),

where D2
v is the second order directional derivative along the direction v. For those points z at which fi(z)

has second derivative, it is easy to check that

D2
vfi(z) = (a�

i v)2 + 3
2
|a�

i z|2
� 2 (a�

i v)21Ri
− (1 + 1 )(a�

i v)21Ri
(11)
2β |ai x| 2 β
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with Ri := {|a�
i z| < β|a�

i x|}. For those points z at which the second derivative of fi(z) does not exist 
(i.e., |a�

i z| = β|a�
i x|), the second order directional derivative along v is well-defined and we have

D2
vfi(z) =

⎧⎨
⎩

(a�
i v)2, if (a�

i z)(a�
i v) > 0;

(2 − 1/β)(a�
i v)2, if (a�

i z)(a�
i v) ≤ 0.

In summary, for any z the second order directional derivative of fi(z) along v is

D2
vfi(z) = (a�

i v)2 + 3
2β2

|a�
i z|2

|a�
i x|2

· |a�
i v|21Ri

− (1
2 + 1

β
)(a�

i v)21Ri
+ Γi(z,v) (12)

with

Γi(z,v) := (qi − 1) (a�
i v)21{|a�

i z|=β|a�
i x|} ≤ 0.

Here, qi = 1 if (a�
i z)(a�

i v) > 0 and qi = 2 − 1/β if (a�
i z)(a�

i v) ≤ 0.

5.3. Proof of Lemma 2.1

Proof. For any fixed z0 ∈ Ω, the terms g(a�
i z0, a�

i x) are subexponential random variables with subexpo-
nential norm τ . By Lemma 6.1, with probability at least 1 − 2 exp

(
−cε2m/τ2) it holds

∣∣∣ 1
m

m∑
i=1

g(a�
i z0,a

�
i x) − E[g(a�

1 z0,a
�
1 x)]

∣∣∣ ≤ ε

3 (13)

for any ε ≤ τ . To obtain the union bound for all z ∈ Ω we need a (standard) covering argument. Since Ω is 
compact, we can construct a δ0-net N with Card(N ) ≤ exp(n log(3R/δ0)) (R is the radius of Ω) such that

N ⊂ Ω ⊂
⋃
z̃∈N

B(z̃, δ0).

Here δ0 > 0 is a constant which will be taken sufficiently small. The needed smallness will be specified later. 
By using the above construction, for any z ∈ Ω, we can find a vector z0 ∈ N such that ‖z − z0‖ ≤ δ0. Since 
K(ai) are subgaussian random variables with subgaussian norm η, Lemma 6.1 implies that with probability 
at least 1 − 2 exp

(
−cmmin(δ2

1/η
2, δ1/η)

)
it holds

1
m

m∑
i=1

K(ai)2 ≤ EK(a1)2 + δ1 ≤ η2 + δ1,

where δ1 > 0 will be taken sufficiently small. On the other hand, we have∣∣∣∣∣ 1
m

m∑
i=1

g(a�
i z,a

�
i x) − 1

m

m∑
i=1

g(a�
i z0,a

�
i x)

∣∣∣∣∣
≤ 1

m

m∑
i=1

K(ai)|a�
i (z − z0)|

≤

√√√√ 1
m

m∑
i=1

K(ai)2 ·

√√√√ 1
m

m∑
i=1

|a�
i (z − z0)|2

≤
√
η2 + δ1 · 2δ0, (14)
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where in the last inequality we used the fact that with high probability:

1
m

m∑
i=1

|a�
i z̃|2 ≤ 1.01, ∀ z̃ ∈ Sn−1.

Furthermore,

|Eg(a�
1 z,a

�
i x) − Eg(a�

1 z0,a
�
i x)| ≤ E

[
K(a1)|a�

1 (z − z0)|
]
≤ ηδ0. (15)

Choose δ0 =
√

2ε
12η and δ1 = min

(
η2, η

)
. Taking the union bound together with (13), (14) and (15), we obtain 

that with probability at least 1 − 2 exp (−c′(ε, τ, η)m) it holds

∣∣∣ 1
m

m∑
i=1

g(a�
i z,a

�
i x) − E[g(a�

1 z,a
�
1 x)]

∣∣∣
≤

∣∣∣ 1
m

m∑
i=1

g(a�
i z,a

�
i x) − 1

m

m∑
i=1

g(a�
i z0,a

�
i x)

∣∣∣ +
∣∣∣ 1
m

m∑
i=1

g(a�
i z0,a

�
i x) − E[g(a�

1 z0,a
�
1 x)]

∣∣∣
+
∣∣∣E[g(a�

1 z,a
�
i x)] − E[g(a�

1 z0,a
�
1 x)]

∣∣∣
≤ 2δ0

√
η2 + δ1 + ε

3 + ηδ0

≤ ε

for all z ∈ Ω, provided m ≥ C max
(
τ2/ε2, 1/η2, 1

)
· log(η/ε) · n. Here, the constant c′(ε, τ, η) := c ·

min
(
ε2/τ2, η2, 1

)
for some universal constant c > 0. �

5.4. Proof of Lemma 3.1

Proof. Note that ∇F (z) = 1
m

∑m
i=1 ∇fi(z) and 〈∇fi(z), z〉 = Ψu(a�

i z, a
�
i x)(a�

i z). From Lemma (6.2) we 
have

Ψu(a�
i z,a

�
i x)(a�

i z) ≥ (a�
i z)2 − |(a�

i z)(a�
i x)|.

Set Ui = a�
i z/‖z‖, Vi = a�

i x. Then from Lemma 6.6 we have

E[|UiVi|] = 2
π

(
τ + σ arctan σ

τ

)
.

It then follows that

1
‖z‖2E[〈∇fi(z), z〉] ≥ 1 − 1

‖z‖ · E[|UiVi|] ≥ 1 − 1
‖z‖ · 2

π

(
τ + σ arctan σ

τ

)
.

From Lemma (6.2), it is easy to check 1
‖z‖2 〈∇fi(z), z〉 is continuous satisfying the conditions in Lemma 2.1

with τ = O(1) and η = O(1/β). Thus for any δ0 > 0 there exists ε0 > 0 such that with probability at least 
1 − 2 exp(−cδ2

0m) for m ≥ Cδ−2
0 log(1/β)n we have

1
‖z‖2 〈∇F (z), z〉 = 1

m

m∑
i=1

1
‖z‖2 〈∇fi(z), z〉 ≥ ε0

for all ‖z‖ ≥ 2
π

(
τ + σ arctan σ

τ

)
+ δ0 (This region is a compact set with respect to λ = β/‖z‖). Here, C and 

c are some universal positive constants. The lemma is proved. �
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5.5. Proof of Lemma 3.2

Proof. Recall that 〈∇F (z),x〉 = 1
m

∑m
i=1 Ψu(a�

i z, a
�
i x)(a�

i x). Let a ∼ N (0, In) be standard Gaussian. 
Then E[〈∇F (z),x〉] = E[Ψu(a�z, a�x)(a�x)]. Set

g(z) = 1
‖z‖E[〈∇F (z),x〉] = 1

‖z‖E[Ψu(a�z,a�x)(a�x)].

Using the notation U, V, W and λ = β/‖z‖ defined in (A3) and expanding out Ψu via (10), it yields

g(z) = σ − λ

β
E[sgn(UV )V 21Ac ] + 1

2λ2 E[U3V −1)1A] −
(1

2 + 1
β

)
E[UV 1A]

where A := {|U | ≤ λ|V |}. Note that g(z) now depends on λ and σ as z is completely determined by λ and 
σ once β is fixed. Set B(λ, σ) := 2

πτ (μ−4
− − μ−4

+ ). By Corollary 6.5 we have

∂g

∂λ
= − 1

β
E[sgn(UV )V 21Ac ] + λ

β
·B(λ, σ) − 1

λ3 E[U3V −1)1A]

+ 1
2λ2 · λ3B(λ, σ) −

(1
2 + 1

β

)
λB(λ, σ)

= − 1
β
E[sgn(UV )V 21Ac ] − 1

λ3 E[U3V −1)1A].

Also by Corollary 6.5, we know

E[U3V −1)1A] = 2
πτ

λ∫
0

t3
(
μ−4
− + μ−4

+
)
dt ≥ 0.

Furthermore, note that Ac = {|U | ≥ λ|V |} = {|V | < λ−1|U |}. By switching the role of U and V we have

E[sgn(UV )V 21Ac ] = E[sgn(UV )U21A′ ] = 2
πτ

λ−1∫
0

t2
(
μ−4
− − μ−4

+
)
dt ≥ 0

where A′ := {|U | ≤ λ−1|V |}. Therefore g is a decreasing function in λ, which means that g is increasing 
with respect to ‖z‖.

We would like to prove that g(z) < 0 for ε0 ≤ ‖z‖ ≤ 1 and σ0 ≤ σ ≤ 1 − σ0. To do so we only need to 
show g(z) < 0 for ‖z‖ = 1, i.e. λ = β and σ0 ≤ σ ≤ 1 − σ0. Now, note that

E[sgn(UV )V 21Ac ] = E[sgn(UV )V 2] − E[sgn(UV )V 21A]

= 2
π

(
τσ + arctan σ

τ

)
− E[sgn(UV )V 21A].

Thus for λ = β, again applying Corollary 6.5 we obtain

g(z) = σ − 2
π

(
τσ + arctan σ

τ

)
+

β∫
0

(
1 + t3

2β2 −
(1

2 + 1
β

)
t

)
B(t, σ) dt. (16)

To establish g(z) < 0 here, we observe that
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∂g(z)
∂β

=
β∫

0

(
1
β

( t

β

)
−

( t

β

)3
)
B(t, σ) dt > 0.

Thus g(z) is increasing with respect to β. Hence, it suffices to show that g(z) < 0 for β = 1/2. Expanding 
B(t, σ) yields

B(t, σ) = 16τ3σt(1 + t2)
π ((1 + t2)2 − 4σ2t2)2

=: τ3σQ(t, σ),

where Q(t, σ) := 16t(1+t2)
π((1+t2)2−4σ2t2)2 . It follows that for β = 1/2 we have

1
στ3 g(z) = 1

τ3

(
1 − 2

π

(
τ + 1

σ
arctan σ

τ

))
+

1/2∫
0

(
1 + 2t3 − 2.5t

)
Q(t, σ) dt. (17)

Clearly Q(t, σ) ≤ Q(t, 1). Next, integrating rational functions by partial fractions, we can obtain

1/2∫
0

(
1 + 2t3 − 2.5t

)
Q(t, 1) dt = 8

π

1/2∫
0

(4t3 − 5t + 2)(t2 + 1)t
(t2 − 1)4 dt

= 4
π

(
35
27 − ln 3

)
< 0.26.

Meanwhile, the term before the integral in (17) is a function of σ and it is decreasing. Indeed, by Corollary 6.5
where we set λ = ∞, we have

P (σ) := 1
τ3

(
1 − 2

π

(
τ + 1

σ
arctan σ

τ

))

= 1
τ3σ

E
[
UV − sgn(UV )V 2]

= 1
τ3σ

∞∫
0

(t− 1)B(t, σ) dt

= 16
π

∞∫
0

(t− 1)(1 + t2)t
[(1 + t2)2 − 4t2σ2]2

dt.

Making a substitution t = 1
u , we obtain

∞∫
1

(t− 1)(1 + t2)t
[(1 + t2)2 − 4t2σ2]2

dt = −
1∫

0

(u− 1)(1 + u2)u2

[(1 + u2)2 − 4u2σ2]2
du.

It gives

P (σ) = −16
π

1∫
0

(1 − t)2(1 + t2)t
[(1 + t2)2 − 4t2σ2]2

dt,

which is decreasing with respect to σ. Thus the maximum of P (σ) is achieved at σ = 0 and we have
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1
τ3

(
1 − 2

π

(
τ + 1

σ
arctan σ

τ

))
≤ lim

σ→0

(
1 − 2

π

(
1 + arctan σ

σ

))

= 1 − 4
π

≤ −0.27.

Thus we have shown by combining the two estimates that 1
στ3 g(z) < −0.01. So g(z) < −δ0 for some 

δ0 > 0.
From Lemma (6.2), one can easily check that 1

‖z‖ 〈∇fi(z),x〉 is continuous satisfying the conditions 
in Lemma 2.1 with τ = O(1) and η = O(1/β). Hence, the lemma follows by applying Lemma 2.1 di-
rectly. �

5.6. Proof of Lemma 3.3

Proof. Again we start from 〈∇F (z),x〉 = 1
m

∑m
i=1 Ψu(a�

i z, a
�
i x)(a�

i x). Let a ∼ N (0, In) be standard 
Gaussian. Then E[〈∇F (z),x〉] = E[Ψu(a�z, a�x)(a�x)]. First we consider σ = 1, for which z = ‖z‖x and 
a�z = ‖z‖a�x. Set λ = β/‖z‖ as usual. One can easily check via (10) that

Ψu(a�z,a�x)(a�x) =
{

(‖z‖ − 1)(a�x)2, ‖z‖ > β;
‖z‖3

2β2 (a�x)2 + (1
2 − 1

β )‖z‖(a�x)2, ‖z‖ ≤ β.

Thus Ψu(a�z, a�x)(a�x) ≤ −δ0(a�x)2 for some δ0 > 0. It follows that E[〈∇F (z),x〉] = E[Ψu(a�z,

a�x)(a�x)] ≤ −δ0. Now by continuity E[〈∇F (z),x〉] ≤ −δ1 for some σ0, δ1 > 0 for all ε0 ≤ ‖z‖ ≤ 1 − ε0

and σ ≥ 1 − σ0.
To show that 〈∇F (z),x〉 < −ε with high probability for m ≥ Cn for all ε0 ≤ ‖z‖ ≤ 1 −ε0 and σ ≥ 1 −σ0.

Observe that Ψu(a�z, a�x)(a�x) is a Lipschitz continuous function of z on this region. The conditions of 
Lemma 2.1 are met by applying Lemma (6.2). The lemma now follows. �

5.7. Proof of Lemma 3.4

Proof. First we assume σ = 0, and prove E[D2
xF (z)] < −5ε0 if ‖z‖ ≤ 1 + δ0 for some ε0, δ0 > 0. Let 

a ∼ N (0, In) be standard Gaussian. Set

G(z) := (a�x)2 + 3
2β2 (a�z)21R −

(1
2 + 1

β

)
(a�x)21R

where R := {|a�z| < β|a�x|}. From (12) with v = x we have D2
xfi(z) ≤ G(z). As before let λ = β/‖z‖, 

U = a�z/‖z‖ and V = a�x. We have

E[G(z)] = 1 + 3
2λ2E[U21A] −

(1
2 + 1

β

)
E[V 21A] =: g(λ)

where A = {|U | ≤ λ|V |}. Observe that by Corollary 6.4,

g′(λ) = − 3
λ3E[U21A] + 3

πτ
(μ−4

+ + μ−4
− ) −

(1
2 + 1

β

) 2
πτ

(μ−4
+ + μ−4

− ) < 0.

So g(λ) is decreasing with respect to λ, which also means E[G(z)] is increasing with respect to ‖z‖. We 
show that E[G(z)] < −5ε0 for ‖z‖ ≤ 1, and it suffices to show this for ‖z‖ = 1, i.e. g(λ) < −5ε0.
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Fig. 6. g0(β).

Since σ = 0 (and hence τ = 1) we have simple closed form solution for g(λ), which by Corollary 6.4 is

g(λ) = 1 + 3
2λ2 · 4

π

λ∫
0

t2

(1 + t2)2 dt−
(1

2 + 1
β

)
· 4
π

λ∫
0

1
(1 + t2)2 dt

= 1 + 3
πλ2

(
arctanλ− λ

1 + λ2

)
− β + 2

πβ

(
arctanλ + λ

1 + λ2

)
.

Since ‖z‖ = 1, it follows that

g(λ) = 1 − 3 + β2 + 2β
π(1 + β2)β + 3 − β2 − 2β

πβ2 · arctan β := g0(β).

The graph of this function g0(β) is shown in Fig. 6; we check that g0(β) < −0.03 for all β ∈ (0, 34 ]. Taking 
ε0 = 0.006 we obtain the desired result. Since g(λ) is continuous, for a sufficiently small δ0 > 0 we have 
g(λ) < −4ε0 for all ‖z‖ ≤ 1 + δ0.

To prove the lemma for the region ‖z‖ ≤ 1 + δ0 and σ ≤ σ0, we need to use Lipschitz condition 
and Lemma 2.1. Our challenge is that the function G(z) is discontinuous with a jump discontinuity when 
|a�z| = β|a�x|. To get around this problem we smooth out the function by introducing

Hp(u, v) := v2 + 3
2β2u

21S −
(1

2 + 1
β

)
v21S +

( 1
β
− 1

) |u|p
βp|v|p−21S

where p > 0 and S = {(u, v) : |u| < β|v|}. A key observation is Hp(u, v) is continuous and satisfies the 
Lipschitz condition with respect to u in Lemma 2.1 (here we need the property |u| < β|v| on S). Clearly 
Hp(a�z, a�x) ≥ G(z). Note that

|u|p
βp|v|p−21S =

(
|u|
β|v|

)p

|v|21S → 0 as p→∞.

It means that E[Hp(a�z, a�x)]−→E[G(z)] as p→∞. Hence for 0 ≤ ‖z‖ ≤ 1 + δ0, by taking p = p0
sufficiently large we obtain E[Hp0(a�z, a�x)] < −3ε0. Because E[Hp0(a�z, a�x)] is a continuous function 
of σ, there exists a σ0 > 0 such that E[Hp0(a�z, a�x)] < −2ε0 for 0 < ‖z‖ ≤ 1 + δ0 and σ ≤ σ0. Finally,
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D2
xF (z) ≤ 1

m

m∑
i=1

Hp0(a�
i z,a

�
i x).

Note that Hp0(a�
i z, a

�
i x) are subexponential random variables with subexponential norm τ = O(1/β). 

On the other hand, Hp0(a�
i z, a

�
i x) is continuous satisfying the Lipschitz type condition in Lemma 2.1

with η = O(1/β). It then follows from Lemma 2.1 that with probability at least 1 − 2 exp(−cβ2m) for 
m ≥ C · 1/β2 log(1/β)n, it holds D2

xF (z) ≤ −ε0 for all z with 0 ≤ ‖z‖ ≤ 1 + δ0 and σ ≤ σ0.
To prove the lemma for z ∈ Bδ0(0) we use virtually identical technique. It is easily seen E[Hp(0)] =

E[G(0)] = 1
2 − 1

β < 0. By continuity E[Hp(z)] < −ε1 for z ∈ Bδ0(0) for some δ0, ε1 > 0. Now using 
Lemma 6.1 and Lemma 2.1 the same argument as in the previous region applies to prove this case of the 
lemma. �

5.8. Proof of Lemma 3.5

Proof. Let a ∼ N (0, In) be standard Gaussian. We follow the same strategy of evaluating an expectation 
and prove the lemma using Lipschitz condition and Lemma 2.1. To begin with, we introduce an auxiliary 
function

G(a�z,a�x,a�v)

:= (a�v)2 +
[

3
2β2

|a�z|2
|a�x|2 · |a�v|2 − (1

2 + 1
β

)(a�v)2
]
χ1

(
|a�z|
|a�x|

)
χ2

(
|a�v|

M0|a�x|

)
,

where

χ1(x) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if 0 ≤ x ≤ β,

1 + β
δ0

− 1
δ0
x if β ≤ x ≤ β + δ0,

0 if x > β + δ0,

with δ0 =
√

2β+β2

3 − β, and χ2(x) ∈ C∞
c (R) is a function satisfying 0 ≤ χ2(x) ≤ 1 for all x, χ2(x) = 1 for 

|x| ≤ 1 and χ2(x) = 0 for |x| ≥ 2. Here, M0 is a positive constant which will be made sufficiently large. 
It is easy to check that G(a�z, a�x, a�v) is continuous with respect to z and v. Furthermore, for some 
sufficiently large M0, it follows from (12) that D2

vfi(z) ≥ G(a�
i z, a

�
i x, a

�
i v). It immediately gives

D2
vF (z) ≥ 1

m

m∑
i=1

G(a�
i z,a

�
i x,a

�
i v). (18)

Thus, to prove the lemma we only need to estimate 1
m

∑m
i=1 G(a�

i z, a
�
i x, a

�
i v). We claim that G(a�z, a�x,

a�v) satisfies the Lipschitz type condition with respect to z, v in Lemma 2.1 with subgaussian norms 
η = O(1/β2.5) and η = O(1/β), respectively. Note that G(a�z, a�x, a�v) is a subexponential with subexpo-
nential norm τ = O(1/β). It then follows from Lemma 2.1 that with probability at least 1 −2 exp(−cε2β2m)
we have

1
m

m∑
i=1

G(a�
i z,a

�
i x,a

�
i v) ≥ E[G(a�z,a�x,a�v)] − ε (19)

for all z ∈ Bδ0(x) and unit vectors v, provided m ≥ Cε−2β−2 log(1/β)n. Here, C and c are positive 
constants.
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On the other hand, note that χ1(x) is enlarged from the set R = {|a�z| < β|a�x|}. It then gives

G(a�x,a�x,a�v) = (a�v)2 + ( 3
2β2 − 1

2 − 1
β

)(a�v)2 · χ2

(
|a�v|

M0|a�x|

)
≥ (a�v)2.

Hence E[G(a�x, a�x, a�v)] ≥ 1. Since G(a�z, a�x, a�v) is continuous with respect to z and v, and v is 
on the unit sphere which is compact, we know that

E[G(a�z,a�x,a�v)] ≥ 0.7 (20)

for z in a neighborhood z ∈ Bδ0(x) for all unit vectors v.
Combining (18), (19) and (20), we obtain that with probability at least 1 − 2 exp(−cβ2m) for m ≥

Cβ−2 log(1/β)n it holds

D2
vF (z) ≥ 1

m

m∑
i=1

G(a�
i z,a

�
i x,a

�
i v) ≥ 0.5

for all z ∈ Bδ0(x) and unit vectors v.
Finally, it remains to prove the claim that G(a�z, a�x, a�v) satisfies the Lipschitz type condition with 

respect to z, v in Lemma 2.1 with subgaussian norms η = O(1/β2.5) and η = O(1/β), respectively. Indeed, 
for the second term of G(a�z, a�x, a�v). Note that

L1(a�z,a�x,a�v) := |a�z|2
|a�x|2 · |a�v|2χ1

(
|a�z|
|a�x|

)
χ2

(
|a�v|

M0|a�x|

)

= |a�z|2
|a�x|2χ1

(
|a�z|
|a�x|

)
· |a

�v|2
|a�x|2χ2

(
|a�v|

M0|a�x|

)
· |a�x|2

=: ψ1

(
|a�z|
|a�x|

)
ψ2

(
|a�v|
|a�x|

)
|a�x|2.

Note that ψ1(t) is a Lipschitz function with Lipschitz norm O(1/δ0) and ψ2(t) is a bound function with 
|ψ2(t)| ≤ 4M2

0 . Here we use the condition β < 1. It gives that

∣∣L1(a�z1,a
�x,a�v) − L1(a�z2,a

�x,a�v)
∣∣ � M2

0
δ0

· |a�(z1 − z2)||a�x|. (21)

Similarly, for the third term of G(a�z, a�x, a�v), we know

L2 := (a�v)2χ1

(
|a�z|
|a�x|

)
χ2

(
|a�v|

M0|a�x|

)
= χ1

(
|a�z|
|a�x|

)
ψ2

(
|a�v|
|a�x|

)
|a�x|2.

Due to the Lipschitz property of χ1(t), we also have

∣∣L2(a�z1,a
�x,a�v) − L2(a�z2,a

�x,a�v)
∣∣ � M2

0
δ0

· |a�(z1 − z2)||a�x|. (22)

A simple calculation leads to 1/δ0 � 1/
√
β. Combining (21) and (22), we can obtain that G(a�z, a�x, a�v)

satisfies the Lipschitz type condition with respect to z in Lemma 2.1 with subgaussian norm η = O(1/β2.5). 
Applying the same arguments to v and recognizing that ψ2(t) is a Lipschitz function with Lipschitz 
norm O(1), we can obtain G(a�z, a�x, a�v) satisfies the Lipschitz type condition with respect to v as 
in Lemma 2.1 with subgaussian norm η = O(1/β). This completes the proof. �
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6. Appendix: auxiliary lemmas

Lemma 6.1 ([40], Theorem 2.8.1). Let g(s, t) be a real valued function such that g(a�
i z, a

�
i x) is subexpo-

nential with subexponential norm ‖g(a�
i z, a

�
i x)‖Ψ1 ≤ τ . Then for any ε > 0 we have

∣∣∣ 1
m

m∑
i=1

g(a�
i z,a

�
i x) − E[g(a�

1 z,a
�
1 x)]

∣∣∣ ≤ ε (23)

with probability at least 1 − 2 exp(−cm min(ε2/τ2, ε/τ)), where c > 0 is a universal constant.

Lemma 6.2. Let Ψ(u, v) = 1
2

(
γ
(

u
v

)
− 1

)2
v2 as defined in (9). Then the derivative Ψu(u, v) of Ψ(u, v)

satisfies

|Ψu(u, v)| ≤ |u| + |v|, Ψu(u, v)u ≥ u2 − |uv|,

and

|Ψu(u1, v) − Ψu(u2, v)| ≤ max(1, |2 − 1/β|) · |u1 − u2|.

Proof. The boundedness and Lipschitz property of Ψu are easy to check and we only prove the bound

Ψu(u, v)u ≥ u2 − |uv|. (24)

Recall the expression (10) of Ψu(u, v). It immediately gives

Ψu(u, v)u
v2 =

{ (
u
v

)2 − |uv |, |u| > β|v|;
1

2β2 ·
(
u
v

)4 + (1
2 − 1

β )
(
u
v

)2
, |u| ≤ β|v|.

Thus, to prove (24) it suffices to show

1
2β2 t

4 + (1
2 − 1

β
)t2 ≥ t2 − |t|

for all |t| ≤ β. Due to the symmetry, we only need to consider the case 0 ≤ t ≤ β. Let

h(t) = t3 − (β2 + 2β)t + 2β2.

It is easy to check that h(t) is a decreasing function for 0 ≤ t ≤ β. Note that h(β) = 0. It then gives h(t) ≥ 0
for all 0 ≤ t ≤ β. This completes the proof. �

Lemma 6.3. Under the assumption (A3) in Section 5.1, let G(λ) := E[g(U, V )1A] where g(t, s) is continuous. 
Then

dG

dλ
= 1

2πτ

∞∫
0

(g(−λv, v) + g(λv,−v)) ve− 1
2μ

2
+v2

dv

+ 1
2πτ

∞∫
(g(λv, v) + g(−λv,−v)) ve− 1

2μ
2
−v2

dv.
0
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Proof. Observe that U = σV + τW . Then the condition |U | ≤ λ|V | is equivalent to

A =
{
τ−1(−λ− σ sgn(V ))|V | ≤ W ≤ τ−1(λ− σ sgn(V ))|V |

}
.

From the definition, we have

G(λ) = E [g(U, V )1A] = 1
2π

∫ ∫
|σv+τw|≤λ|v|

g(σv + τw, v)e− 1
2 (v2+w2)dwdv

= 1
2π

∞∫
0

(
λ
τ −σ

τ

)
v∫

−
(
λ
τ +σ

τ

)
v

g(σv + τw, v)e− 1
2 (v2+w2)dwdv

+ 1
2π

0∫
−∞

−
(
λ
τ +σ

τ

)
v∫

(
λ
τ −σ

τ

)
v

g(σv + τw, v)e− 1
2 (v2+w2)dwdv.

It then gives that

G′(λ) = 1
2πτ

∞∫
0

g(λv, v)ve− 1
2μ

2
−v2

dv + 1
2πτ

∞∫
0

g(−λv, v)ve− 1
2μ

2
+v2

dv

− 1
2πτ

0∫
−∞

g(−λv, v)ve− 1
2μ

2
+v2

dv − 1
2πτ

0∫
−∞

g(λv, v)ve− 1
2μ

2
−v2

dv

= 1
2πτ

∞∫
0

(g(−λv, v) + g(λv,−v)) ve− 1
2μ

2
+v2

dv

+ 1
2πτ

∞∫
0

(g(λv, v) + g(−λv,−v)) ve− 1
2μ

2
−v2

dv. �

Corollary 6.4. Assume that g(t, s) = |t|p|s|q in Proposition 6.3 where p + q ≥ 0. Then

G′(λ) = λp

πτ

(
μ
−(p+q+2)
− + μ

−(p+q+2)
+

) ∞∫
0

tp+q+1e−
1
2 t

2
dt.

In particular, if p + q = 2 then G′(λ) = 2λp

πτ (μ−4
− + μ−4

+ ).

Proof. This is a straightforward application of Proposition 6.3. Observe that for p + q = 2 the integral ∫∞
0 t3e−

1
2 t

2
dt = 2. �

Corollary 6.5. Assume that g(t, s) = sgn(ts)|t|p|s|q in Lemma 6.3 where p + q ≥ 0. Then

G′(λ) = λp

πτ

(
μ
−(p+q+2)
− − μ

−(p+q+2)
+

) ∞∫
0

tp+q+1e−
1
2 t

2
dt.

Hence G(λ) ≥ 0. In particular, if p + q = 2 then G′(λ) = 2λp

(μ−4
− − μ−4

+ ).
πτ
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Proof. Same as the previous corollary. �

Lemma 6.6. Let a ∼ N (0, In) be a standard Gaussian vector in Rn. Then

E[|a�z||a�x|] = 2
π

(
τ + σ arctan σ

τ

)
‖z‖‖x‖,

E[sgn((a�z)(a�x))|a�x|2)] = 2
π

(
τσ + arctan σ

τ

)
‖x‖2,

where σ = σ(z) := 〈z,x〉/‖z‖‖x‖ and τ = τ(z) :=
√

1 − σ2.

Proof. Without loss of generality, we assume ‖z‖ = ‖x‖ = 1. For the expectation E[|a�z||a�x|], let 
σ = cosα for some α ∈ [0, 2π). Then we have

E[|a�z||a�x|] = 1
2π

∞∫
−∞

∞∫
−∞

|v(σv + τw)| · e− 1
2 (v2+w2)dwdv

= 1
2π

2π∫
0

∞∫
0

r3|sin θ| · |σ sin θ + τ cos θ| · e− 1
2 r

2
drdθ

= 1
π

2π∫
0

|sin θ sin(θ + α)|dθ

= 2
π

(
sinα + (π2 − α) cosα

)
= 2

π

(
τ + σ arctan σ

τ

)
.

Similarly,

E[sgn((a�z)(a�x))|a�x|2)] = 1
2π

∞∫
−∞

∞∫
−∞

sgn(σv2 + τvw) · v2 · e− 1
2 (v2+w2)dwdv

= 1
π

2π∫
0

sgn (sin θ sin(θ + α)) sin2 θdθ

= 2
π

π−α∫
0

sin2 θdθ − 2
π

π∫
π−α

sin2 θdθ

= 2
π

(
sin(2α) + π

2 − α
)

= 2
π

(
τσ + arctan σ

τ

)
.

This completes the proof. �
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